РУсскоязычный Архив Электронных СТатей периодических изданий
Известия высших учебных заведений. Поволжский регион. Физико-математические науки/2013/№ 4/

ИНВАРИАНТЫ ГЛАДКИХ СЛОЕНИЙ

Актуальность и цели. Геометрия гладких слоений является одним из основных объектов исследования в дифференциальной геометрии, имеющим многочисленные приложения, в частности в теоретической физике. Дифференциальные инварианты слоений изучались одним из авторов настоящей статьи методами, развитыми в работах А. Виноградова, Д. Алексеевского и В. Лычагина. Однако эти методы не предоставляют инвариантной формы записи дифференциальных уравнений изучаемых объектов, что создает определенные трудности при исследовании сложных дифференциально-геометрических структур. Цель исследования состоит в том, чтобы разработать универсальный подход к изучению слоений различной коразмерности. Материалы и методы. Используется метод внешних форм и подвижного репера, разработанный Эли Картаном и развитый в работах Г. Ф. Лаптева, А. М. Васильева и других геометров. В частности, Г. Ф. Лаптевым была построена инвариантная теория дифференцируемых отображений гладкого многообразия в многообразие большей размерности. В этой работе мы показываем, как исследовать методом Картана – Лаптева геометрию гладких субмерсий и определяемых ими гладких слоений. Результаты. Найден канонический вид структурных уравнений гладкой субмерсии, выяснен геометрический смысл канонизации. Показано, что с субмерсией каноническим образом связаны G-структуры первого и второго порядка и некоторый трехвалентный тензор. Выводы. Метод Картана – Лаптева позволяет эффективно изучать геометрию гладких слоений различной коразмерности как на произвольных гладких многообразиях, так и на многообразиях, снабженных дополнительной структурой.

Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
** - вычисляется автоматически, возможны погрешности

Похожие документы: