Об одном подходе к интегрированию обыкновенных дифференциальных уравнений с помощью рядов
            Предложен численно-аналитический метод решения задачи Коши для линейных и нелинейных систем обыкновенных дифференциальных уравнений, основанный на приближении решения и его производной частичными суммами смещенных рядов Чебышева. Коэффициенты рядов вычисляются с помощью итерационного процесса путем применения формулы численного интегрирования Маркова с одним или двумя фиксированными узлами. Метод дает аналитическое представление решения и его производной и обладает более высокой точностью и более крупным шагом дискретизации, чем методы типа Рунге-Кутты, Адамса и Гира.
            Авторы
            
            Тэги
            
            Тематические рубрики
            
            Предметные рубрики
           
            В этом же номере:
            
            Резюме по документу**
            
                Предложен численно-аналитический метод решения задачи Коши для линейных и нелинейных систем обыкновенных дифференциальных уравнений, основанный на приближении решения и его производной частичными суммами смещенных рядов Чебышева. <...> Коэффициенты рядов вычисляются с помощью итерационного процесса путем применения формулы численного интегрирования Маркова с одним или двумя фиксированными узлами. <...> Метод дает аналитическое представление решения и его производной и обладает более высокой точностью и более крупным шагом дискретизации, чем методы типа Рунге-Кутты, Адамса и Гира. <...> Предложен численно-аналитический метод решения задачи Коши для линейных и нелинейных систем обыкновенных дифференциальных уравнений, основанный на приближении решения и его производной частичными суммами смещенных рядов Чебышева. <...> Коэффициенты рядов вычисляются с помощью итерационного процесса путем применения формулы численного интегрирования Маркова с одним или двумя фиксированными узлами. <...> Метод дает аналитическое представление решения и его производной и обладает более высокой точностью и более крупным шагом дискретизации, чем методы типа Рунге-Кутты, Адамса и Гира. <...> 
            
            ** - вычисляется автоматически, возможны погрешности
            Похожие документы: