РУсскоязычный Архив Электронных СТатей периодических изданий
Научный вестник Новосибирского государственного технического университета/2014/№ 4/

Параметры управления пониженного порядка одноканальных систем и корневые координаты

В статье рассматривается важная составляющая алгебраического метода синтеза алгоритмов автоматического управления пониженного порядка для линейных одноканальных систем. Полиномиальный подход к нахождению оптимального регулятора для такой системы опирается на геометрическую интерпретацию инженерных представлений об оптимальности: полюса системы должны располагаться в максимально сдвинутой влево области заданного вида в левой комплексной полуплоскости. Максимальный сдвиг, как правило, означает, что на правой границе области, накрывающей все полюса – на прямой, на конусе, на гиперболе, оказывается наибольшее их число. Уравнения относительно координат этих правых полюсов (корневых координат) связывают степени свободы, обеспечивающиеся настраиваемыми параметрами регулятора. А само взаимное расположение полюсов соответствует критической корневой диаграмме. Критическое расположение полюсов означает наличие у характеристического многочлена системы определенного множителя – корневого многочлена. Коэффициенты характеристического многочлена зависят от параметров управления, причем для одноканальных систем эта зависимость линейна, тогда как коэффициенты корневого многочлена зависят от корневых координат. Поделив характеристический многочлен на корневой и приравняв остаток к нулю, можно получить систему уравнений, связывающую параметры управления и корневые координаты, что позволяет выразить первые через последние. Этот прием был продемонстрирован на нескольких содержательных примерах, однако обоснования непустоты и достаточности системы уравнений не было. В статье теоретически восполняется указанный пробел; рассмотрение основывается на анализе свойств многочленов от лапласовой переменной s, коэффициенты которых оказываются линейными функциями от параметров управления и симметрическими многочленами от правых корней.

Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
** - вычисляется автоматически, возможны погрешности

Похожие документы: