РУсскоязычный Архив Электронных СТатей периодических изданий
Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика/2014/№ 2/

Построение классификаторов с использованием искусственных нейронных сетей и принципа ADABOOST

Проблема построения различного рода детекторов объектов на изображениях до сих пор остаётся актуальной задачей, несмотря на набор достаточно сильных методов, описанных в литературе. Одним из методов, ставших стандартом для построения эффективных и быстрых классификаторов, является каскад Виолы–Джонса, который до сих пор является основополагающим для поиска объектов на изображении в реальном времени и его реализация была включена в открытую библиотеку компьютерного зрения OpenCV. Для экспериментов в данной работе использовалась база данных изображений При прикладном использовании алгоритмов в компьютерном зрении существенным фактором становится вычислительная сложность. Предпочтительно использовать в качестве классификаторов пороговые решающие функции или Хаар-признаки, вычислительная сложность которых мала. Однако, на практике ADABOOST, как жадный алгоритм, не всегда даёт эффективную комбинацию классификаторов. В данной работе рассмотрен подход к построению классификаторов сравнимой эффективности, на примере задачи детектирования лица.

Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
** - вычисляется автоматически, возможны погрешности

Похожие документы: