В работе производится обобщение фреймовых систем. Первые шаги в описании систем такого типа принадлежат Т. П. Лукашенко. В 1997 г. он ввёл класс ортоподобных обобщённых систем, а в 2006 г. поставил вопрос о расширении фреймовых систем на обобщённые пространства. Этот вопрос и рассматривается в данной работе. Сначала в работе приводится описание на данный момент хорошо изученных дискретных и интегральных фреймов, а также описываются основные области практического применения таких фреймовых систем. Рассматриваются введённые Т. П. Лукашенко обобщённые системы, подобные ортогональным, и расширяются до обобщённых фреймов. Приводятся примеры, указывающие на то, что вводимый класс является более широким, чем рассматриваемые раньше дискретные и интегральные фреймы, и более общим, чем обобщённые ортоподобные системы (в качестве примеров приводятся преобразования Фурье и преобразования Гильберта). Вводится понятие обобщённых систем Рисса и исследуется связь фреймов и систем Рисса в обобщённом случае. Две доказываемые в работе теоремы устанавливают тесную связь между введёнными обобщёнными фреймами и обобщёнными системами Рисса и приводят необходимые и достаточные критерии для того, чтобы система являлась обобщённым фреймом. Выводится аналог равенства Парсеваля для обобщённых фреймовых систем.