Данное исследование посвящено модификации метода Давыдова (крупных частиц) для случая треугольной сетки. Разрабатывается численный подход к решению двумерных уравнений течения невязкого совершенного газа (плоский случай) с использованием треугольных сеток. В данном методе вместо двух классов ячеек разностной сетки (дробные ячейки непосредственно около тела и регулярные ячейки в остальных случаях) классического метода крупных частиц используется единственный класс треугольных ячеек, что упрощает логику расчётов. Для записи уравнений метода вместо матричной записи в случае регулярной сетки используется векторная запись. В связи с использованием треугольной сетки значительно изменены формулы всех трёх этапов метода, хотя идеология метода остаётся прежней: расщепление исходных уравнений по физическим факторам. Треугольная сетка, кроме несомненных достоинств, связанных с построением тела сложной формы, вносит дополнительные сложности в численные расчёты: генерация самой сетки (триангуляция); соседние треугольники не обязательно имеют соседние индексы; для подвижного тела время расчётов увеличивается за счёт перестроения сетки; дополнительная память для хранения геометрии расчётной области. Также в работе проводится сравнение численных решений задачи течения невязкого совершенного газа на нерегулярной сетке с использованием различных методов. Проводится сравнение численных результатов, полученных с помощью метода крупных частиц, для случая треугольной сетки и для случая регулярной сетки. Проводится сравнение численных результатов с приближённой аналитикой.