В работе описывается общий метод, позволяющий с помощью непрерывных векторнозначных функций находить решения дифференциально-операторных уравнений определённого вида с переменными коэффициентами. Рассматриваемые уравнения включают в себя, как частный случай, дифференциальные уравнения в частных производных, дифференциально-разностные и интегральные уравнения, а также другие функционально-операторные уравнения. Решения представляются равномерно сходящимися функциональными векторнозначными рядами, порождёнными набором решений некоторого обыкновенного дифференциального уравнения n-го порядка и некоторым набором элементов локально выпуклого пространства. Найдены достаточные условия непрерывной зависимости решений от порождающего набора. Также найдено решение задачи Коши для рассматриваемых уравнений и указаны условия его единственности. Кроме того, получено так называемое общее решение рассматриваемых уравнений (функция самого общего вида, из которой можно получить любое частное решение). Исследование проводится с помощью характеристик (порядка и типа) оператора, а также операторных характеристик (операторного порядка и операторного типа) вектора относительно оператора. Также в исследовании применяется сходимость операторных рядов относительно равностепенно непрерывной борнологии.