В работе исследуется задача построения сплайна σ в гильбертовом пространстве, удовлетворяющего двусторонним ограничениям z䗺 ≤ Aσ ≤ z+ с линейным оператором A и минимизирующего функционал квадрата гильбертовой полунормы. Решение этой задачи можно получить итерационными методами выпуклого программирования, в частности методом проекции градиента. Предложена модификация метода проекции градиента, позволяющая выявить множество активных ограничений решения за меньшее число итераций. Показана эффективность предложенной модификации в задаче приближения псевдолинейным сплайном двух переменных.