Исследована трехмерная контактная задача с неизвестной областью контакта для неоднородного упругого полупространства, когда модуль сдвига постоянный, а коэффициент Пуассона зависит от глубины. Дополнительная нормальная сила приложена вне области контакта. При помощи интегрального преобразования Фурье задача сведена к двумерному интегральному уравнению первого рода. Затем для решения использован метод Галанова нелинейных граничных интегральных уравнений типа Гаммерштейна, позволяющий одновременно определить область контакта и давления в этой области. Сделаны расчеты контактного давления и вдавливающей силы для пирамидального штампа при тригонометрических законах изменения коэффициента Пуассона.