Исследуются условия стабилизации процессов динамического распределения ресурсов в полных несимметричных ресурсных сетях с одним приемником. Доказано, что в таких сетях при любой величине ресурса предельное состояние существует и единственно. Получены формулы для координат вектора предельного состояния, выражающие зависимость количества ресурса в вершинах от параметров сети (пропускных способностей ребер и количества вершин) и от значения суммарного ресурса. Найдено пороговое значение суммарного ресурса, при превышении которого ресурсы всех вершин (кроме приемника) в предельном состоянии одинаковы и не зависят от суммарного ресурса; все излишки аккумулируются в приемнике. При ресурсе, меньшем порогового значения, все координаты вектора предельного состояния зависят от его количества линейно.