Развивается аппарат для изучения краевой задачи Римана–Гильберта для обобщенных аналитических функций класса Смирнова в односвязной области, граница которой либо кривая Радона без точек заострения, либо кривая Ляпунова. Коэффициент краевого условия предполагается либо непрерывным с возмущением измеримой ограниченной функцией, либо непрерывным с возмущением функцией ограниченной вариации. Строится специальное представление 2-го рода для обобщенных аналитических функций класса Смирнова. Оно обобщает на рассматриваемый случай известное представление И.Н. Векуа для единичного круга и гельдеровых вплоть до края решений с коэффициентом краевого условия z, где n − натуральное; позволяет свести задачу к соответствующей задаче для голоморфных функций. Получены также некоторые новые свойства комплексных потенциалов, представляющие и самостоятельный интерес.