Показано преимущество обработки большого числа примеров в нейросетевом базисе, заключающееся в более высокой достоверности решения задач автоматической классификации слоем (картой) Кохонена по сравнению с традиционными методами динамических сгущений и кластер-анализа и обеспечивающее большую оперативность функционирования классификационных моделей в контуре управления и диагностики данного типа электромеханических систем