НОВЫЙ МЕТОД ПОСТРОЕНИЯ ФУНКЦИИ ПАРНОГО РАСПРЕДЕЛЕНИЯ РАССТОЯНИЙ МЕЖДУ ЧАСТИЦАМИ В НЕУПОРЯДОЧЕННЫХ СТРУКТУРАХ
Предложен новый способ описания неупорядоченных структур мономолекулярных веществ с помощью функции плотности вероятности распределения ближайших узлов решетки — s-функции. Проанализирована связь s-функции с функцией двухчастичного распределения, выведено уравнение состояния с параметром неупорядоченности. Найдены асимптотики температурных зависимостей параметра неупорядоченности. Впервые указана связь параметра неупорядоченности со статистикой распределения расстояний между узлами
Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
Ю р ч е н к о
НОВЫЙ МЕТОД ПОСТРОЕНИЯ ФУНКЦИИ
ПАРНОГО РАСПРЕДЕЛЕНИЯ РАССТОЯНИЙ
МЕЖДУ ЧАСТИЦАМИ
В НЕУПОРЯДОЧЕННЫХ СТРУКТУРАХ
Предложен новый способ описания неупорядоченных структур мономолекулярных
веществ с помощью функции плотности вероятности
распределения ближайших узлов решетки — s-функции. <...> Проанализирована связь s-функции с функцией двухчастичного распределения,
выведено уравнение состояния с параметром неупорядоченности. <...> Впервые указана связь параметра
неупорядоченности со статистикой распределения расстояний
между узлами. <...> Теория неупорядоченного состояния многочастичных систем представляет
собой один из краеугольных камней современной статистической
физики. <...> Несмотря
на многочисленные попытки до сих пор достаточно ограничен набор
методов, позволяющих строить уравнения состояния и предсказывать
области потенциальных фазовых превращений даже в относительно
простых мономолекулярных системах. <...> Одна из существенных сложностей сегодня состоит в том, что
для жидкостей приближенные методы построения функций парного
распределения недостаточно эффективны. <...> Традиционный способ [2]
учета вириальных поправок при построении уравнения состояния,
особенно вблизи точки перехода жидкость — кристалл, приводит к
трудностям суммирования бесконечного числа слагаемых близкого
порядка. <...> Последнее связано с тем, что при вириальном разложении
для жидкости необходимо учитывать многочастичные взаимодействия
высших порядков. <...> Однако при разложении уравнения состояния в ряд
число термодинамических диаграмм, соответствующих многочастичным
взаимодействиям, резко возрастает, ввиду чего описанная задача
становится недоступной для количественного анализа. <...> В то же время в структурном отношении простые жидкости изза
достаточно сильного взаимодействия между частицами в некотором
смысле ближе к кристаллам, чем к газам. <...> Об этом свидетельствует то,
что ряд свойств веществ в жидком состоянии <...>
** - вычисляется автоматически, возможны погрешности
Похожие документы: