Задача быстродействия при управлении ориентацией двухзвенника в безопорной фазе движения
Исследовано движение двух шарнирно соединенных тел в фазе полета (невесомости). Решена задача минимизации и максимизации времени разворота из заданного начального положения в заданное конечное. Предполагается, что при этом кинетический момент системы относительно центра масс отличен от нуля. Данная
задача является простейшей моделью управления ориентацией прыгающего аппарата в безопорной фазе прыжка.
Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
УДК 531.8
Задача быстродействия
при управлении ориентацией двухзвенника
в безопорной фазе движения
В. <...> М.В. Келдыша РАН, Москва, 125047, Россия
Исследовано движение двух шарнирно соединенных тел в фазе полета (невесомости). <...> Решена задача минимизации и максимизации времени разворота из заданного
начального положения в заданное конечное. <...> Предполагается, что при этом кинетический
момент системы относительно центра масс отличен от нуля. <...> Данная
задача является простейшей моделью управления ориентацией прыгающего аппарата
в безопорной фазе прыжка. <...> При увеличении скорости движения машин, передвигающихся
с помощью ног, энергетически выгодно переходить от статически
устойчивых режимов ходьбы к динамическим, а затем к бегу
и прыжкам аналогично тому, как это имеет место у животных [1, 2]. <...> В безопорной фазе движения центр масс аппарата перемещается
по баллистической траектории, и его движение неуправляемо. <...> Движением
аппарата вокруг центра масс можно управлять за счет изменения
движения конечностей или одной части корпуса относительно
другой [1–10]. <...> Как для прыгающих аппаратов, так и для животных
и человека целью управления является обеспечение требуемого
(программного) положения в момент приземления. <...> Задача
управления движением в фазе полета разбивается на две подзадачи. <...> Алгоритм построения программного движения определяет скорости
всех звеньев аппарата в момент отрыва от опорной поверхности,
обеспечивающие переход из заданного начального положения в заданное
конечное. <...> Алгоритм стабилизации движения обеспечивает
реализацию требуемого положения в момент приземления при наличии
возмущений и ошибок отработки программных значений коор1 <...> В.В. Лапшин, Г.К. Боровин
динат и скоростей в момент отрыва от опорной поверхности за счет
изменения движения ног относительно корпуса [2–5, 8]. <...> Для исследования вопроса о допустимом значении ошибок, которые
способен отработать алгоритм стабилизации, представляет <...>
** - вычисляется автоматически, возможны погрешности
Похожие документы: