РУсскоязычный Архив Электронных СТатей периодических изданий
Вестник Северного (Арктического) федерального университета. Серия 'Естественные науки'/2015/№ 2/
В наличии за
40 руб.
Купить
Облако ключевых слов*
* - вычисляется автоматически
Недавно смотрели:

Модификации итерационных сплайнов по многочленам Бернштейна

Для многочленов Бернштейна и ряда их классических обобщений, относящихся к классу линейных положительных операторов, известно, что с увеличением гладкости функции порядок ее приближения такими операторами не улучшается. А именно, наличие производной выше второго порядка перестает влиять на увеличение скорости сходимости многочленов Бернштейна к порождающей функции. При этом многочлены Бернштейна обладают замечательным свойством одновременного приближения функции и ее производных, что делает их удобным инструментом для применения в построении различных численных моделей (например, для аппроксимации исходных данных мониторинга в вычислительных алгоритмах). Существует несколько подходов к получению последовательностей полиномиальных операторов, которые решали бы проблему скорости аппроксимации непрерывно дифференцируемых функций. Чаще всего речь идет о построении некоторых модификаций исходных многочленов, например последовательностей бернштейновского типа, модификаций Кирова. В статье предлагается принципиально другой способ обобщения классических многочленов, позволяющий сохранить их линейность и положительность, а следовательно, и основанные на этом методы доказательства утверждений, но при этом приводящий к получению операторов, реагирующих на повышение гладкости функции. Для этого сначала строятся итерационные сплайны по многочленам Бернштейна, имеющие более высокую скорость сходимости к порождающей функции, чем исходные операторы. Для них приведены соответствующие теоремы об аппроксимации непрерывных и гладких функций, даны оценки центральных моментов. Показано, что, несмотря на увеличение общей скорости сходимости, построенные сплайны обладают тем же недостатком, что и порождающие их многочлены: приближение с их помощью функций, имеющих производную выше второго порядка, не улучшается. Затем изучаются такие модификации рассматриваемых сплайнов, порядок сходимости которых к порождающей функции существенно увеличивается с повышением ее гладкости. Исследуются основные приближающие свойства полученных последовательностей операторов, доказываются соответствующие теоремы типа Поповичиу и Вороновской-Бернштейна.

Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
Для многочленов Бернштейна и ряда их классических обобщений, относящихся к классу линейных положительных операторов, известно, что с увеличением гладкости функции порядок ее приближения такими операторами не улучшается. <...> А именно, наличие производной выше второго порядка перестает влиять на увеличение скорости сходимости многочленов Бернштейна к порождающей функции. <...> При этом многочлены Бернштейна обладают замечательным свойством одновременного приближения функции и ее производных, что делает их удобным инструментом для применения в построении различных численных моделей (например, для аппроксимации исходных данных мониторинга в вычислительных алгоритмах). <...> Существует несколько подходов к получению последовательностей полиномиальных операторов, которые решали бы проблему скорости аппроксимации непрерывно дифференцируемых функций. <...> Чаще всего речь идет о построении некоторых модификаций исходных многочленов, например последовательностей бернштейновского типа, модификаций Кирова. <...> В статье предлагается принципиально другой способ обобщения классических многочленов, позволяющий сохранить их линейность и положительность, а следовательно, и основанные на этом методы доказательства утверждений, но при этом приводящий к получению операторов, реагирующих на повышение гладкости функции. <...> Для этого сначала строятся итерационные сплайны по многочленам Бернштейна, имеющие более высокую скорость сходимости к порождающей функции, чем исходные операторы. <...> Для них приведены соответствующие теоремы об аппроксимации непрерывных и гладких функций, даны оценки центральных моментов. <...> Показано, что, несмотря на увеличение общей скорости сходимости, построенные сплайны обладают тем же недостатком, что и порождающие их многочлены: приближение с их помощью функций, имеющих производную выше второго порядка, не улучшается. <...> Затем изучаются такие модификации рассматриваемых сплайнов, порядок <...>
** - вычисляется автоматически, возможны погрешности

Похожие документы: