РУсскоязычный Архив Электронных СТатей периодических изданий
Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика/2015/№ 4/

Достаточные условия разрешимости функционально-дифференциального уравнения с ортотропными сжатиями в весовых пространствах

В данной работе исследуется разрешимость одного функционально-дифференциального уравнения в шкале весовых пространств Кондратьева. Уравнение рассматривается на вещественной плоскости, имеет постоянные коэффициенты и содержит преобразование аргументов искомой функции, причем это преобразование состоит в сжатии одного и растяжении другого аргумента. Такие преобразования мы называем ортотропными сжатиями. Показано, что рассматриваемая задача сводится к обратимости разностного оператора на прямой с переменными гладкими коэффициентами, стабилизирующимися на бесконечности. Получены достаточные условия обратимости разностного оператора и исходного функционально-дифференциального оператора в алгебраическом виде. Хорошо известно, что свойства функционально-дифференциальных уравнений во многом определяются структурой орбит точек области под действием группы, порожденной присутствующими в уравнении преобразовании. Для изотропных сжатий орбиты располагаются на лучах, выходящих из начала координат, и сгущаются в начале координат — неподвижной точке оператора. В случае если по одной координате происходит сжатие, а по другой растяжение, орбиты находятся на линиях, имеющих вид гипербол. При этом начало координат по-прежнему является неподвижной точкой. Поэтому естественно предположить, что задачи с ортотропными сжатиями по своим свойствам и методам исследования отличаются от задач с изотропными сжатиями.

Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
** - вычисляется автоматически, возможны погрешности

Похожие документы: