Работа имеет обзорный характер и представляет собой первую (математическую) часть комплексного исследования. В компактной форме даны сведения об алгебрах гиперкомплексных чисел (и поличисел) с ассоциативным умножением: кватернионов, бикватернионов, двойных и дуальных чисел. Показано, что единицы всех этих алгебр, а также алгебр действительных и комплексных чисел могут быть представлены как квадратичные комбинации двумерных векторов локального базиса, определенного на некоторой фундаментальной поверхности. Приведены также основные соотношения дифференциальной геометрии кватернионных пространств.