Рассматривается оператор сужения в пространствах Фреше целых функций. В качестве множества сужения берется последовательность нулей специальной целой функции L, составляющая минимальное достаточное множество для рассматриваемого пространства. Получены необходимые и достаточные условия существования линейного непрерывного левого обратного к оператору сужения. Они формулируются в терминах существования целой функции двух переменных с оценками роста, совпадающей на диагонали c L. Развита техника исследования, позволяющая избавляться от ряда ограничений, ранее использовавшихся в двойственном индуктивном случае.