Развитие теории и практики глобальной оптимизации требует не только улучшать существующие и синтезировать новые эффективные методы и алгоритмы недифференцируемой оптимизации при наличии сравнительно простых ограничениях типа неравенств, но и учитывать реально существующие более сложные ограничения неравенства и общие ограничения равенства. В статье изложен способ конструирования алгоритмов недифференцируемой глобальной оптимизации при наличии ограничений типа равенств. В основе алгоритмов лежит: 1) разнесение во времени пробных и рабочих шагов, 2) селективное усреднение искомых переменных по результатам экспериментальных данных, полученных в пробных точках, 3) учёт ограничений типа равенств в многомерном ядре при выполнении рабочих шагов, 4) адаптивная пошаговая перестройка размеров прямоугольной области пробных движений, 5) использование в алгоритмах только относительных значений всех функций (оптимизируемой и ограничений). При ограничениях типа равенств в базовой схеме глобальной оптимизации нормированные ядра становятся многомерными. Эти ядра построены с использованием произведения одномерных ядер по минимизируемой функции и по всем функциям ограничений равенств. Сжатие всех функций ограничений в одну обобщенную функцию позволило уменьшить размерность ядер до двух. Существенное упрощение структуры алгоритмов и числа настраиваемых параметров достигнуто за счёт перехода в аргументах ядер к безразмерным переменным, лежащим в интервале [0; 1]. На численных примерах продемонстрирована высокая скорость сходимости алгоритмов, высокая точность получаемого решения и близкая к единице оценка вероятности отыскания истинного решения даже при высоком уровне аддитивной помехи для минимизируемой функции.